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ABSTRACT 

We investigate the phenomenon of dynamical generation of 
N-l 

gauge interactions from CP models in four dimensions. We 

do this for the CP' model on a lattice. The phase diagram 

of a model that interpolates between CP2 and u(1) gauge 

theory on a lattice is first mapped out. The potential 

between static charges in various regions of this diagram is 

also measured. Contrary to hopes based on the large N 

behavior of similar models in two dimensions and on our 

phase diagram we find that the potentials generated by cp2 

do not bear any resemblance to those of U(1). They are 

rather similar to the Higgs phase of an abelian gauge theory 

in both phases displayed by CP2 . 

*On leave from the American University of Beirut, Lebanon. 

a Operated by Unlversltiss Research A8rociation Inc. under contract with the United States Department of Energy 



I. INTRODUCTION 

With the introductior(l"of the Cp%dels in two dimensions, it 

was recognized that aside from their property of having 

instanton solutions they also exhibit in the large N limit 

the interesting property of dynamical generation of gauge 

fields. Thus in effect a long range Coulomb force is 

generated from a current -current interaction. This is 

traced to the local gauge invariance that these models have 

built into their structure. This gauge invariance is 

expressed in terms of a (dependent) gauge field without a 

kinetic term added to the Lagrangian. However what one can 

show in the large N limit in two dimensions, where the model 

is renormalizable, is that an effective kinetic term is 

dynamically generated; the gauge field acquires a propagator 

of a dynamical nature through vacuum polarization processes. 

This property is also shared, in an appropriate large N 

limit, by extensions of these models(2) which possess a 

similarly represented non-abelian gauge invariance (RPN-') . 

Furthermore, extentions of both CPN-' and their non-abelian 

counterparts to supersymmetric versions is possible (3 ) and 

exhibit similar properties. 



3 

The extension of the supersymmetric version of these models 

to four dimensions Was carried out by Cremmer and Scherk 

(4 ). They have also shown that supergravity theories 

incorporate such models in their structure and that it is 

through this mechanism that supergravity theories appear to 

exhibit "hidden" local gauge invariance symmetries. 

The N=S supergravity theory (5 ) in which all particles, 

except the graviton ,are thought to be composite relies 

heavily on the hope that the dynamical generation of 

(non-abelian and abelian ) gauge bosons will result out of 

the "hidden" local gauge invariance the theory has in a 
N-l N-l manner similar to the two dimensional CP and HP models. 

Thus in order to understand the validity of such theories 

one must answer the question of whether such a hope may be 

realized. 

Since direct extensions of CPN-' and HPN-' to four dimensions 

leads to nonrenormalizable theories one cannot rely on the 

large N perturbative treatment of vacuum polarization graphs 

so useful in the two dimentional case. These graphs are 

highly divergent and hence cutoff dependent. Any attempt at 

removing this dependence via counter terms leads naturally 

to this term being (FW,)' where F ~Lv is the field strength of 

the gauge field. This is tantamount to having started with 

a theory with this kinetic term built in. Thus one may not 
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argue that the gauge bosons may be dynamically generated. 

In fact in this case one has elementary gauge fields 
N-l 

interacting with the elementary scalar fields of CP or 

HPN-' forming a Higgs type system. Probably the best that 

one can do with out a kinetic counter term in this case is 

to think of the four dimensional CPN-' and HP 
N-l 

models as 

leading to effective gauge theories valid at scales much 

smaller than the cutoff introduced. 

With a kinetic term for the gauge fields one has essentially 

Higgs models with deep and narrow potentials for the scalar 

fields. Such models have been compared(6&t d=4-E to CP 
N-l 

and 

HP N-l models in d=2+E . There is remarkable similarity of 

renormalization group functions for the two systems at 

d=2+E. It is this similarity that gives one hope that CPN-' 

and HP N-l 
may exist, though nonperturbatively, in four 

dimensions; indeed that the dynamical generation of gauge 

fields may be realized. Thus to understand this phenomenon 

,at least partly, we turn to one of the few exploitable 

non-perturbative methods currently available; namely Monte 

Carlo simulations on a lattice. 
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We set up a simple CP2 model on a four dimensional lattice 

and add on a kinetic term for the gauge field in the form of 

the Wilson' action for u(l). We then study the phase 

structure of this system and in particular calculate the 

potential between static charges as generated by CP' and the 

~(1) components separately and in combination. We find that 

CP2 has a phase simply connected with the confining phase of 

U(1) (Fig.1). On the other hand CP2 does not exhibit a 

phase similar to the Coulomb phase of U(1). This second 

phase is separated from it by a critical line and appears to 

be a continuation of the Higgs phase above this line; it 

also appears to exhibit a potential similar to that of this 

phase (Figs.2b,3b,4). 

The following two sections present the lattice analysis we 

have carried out. We then end with a discussion and 

conclusions. 
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N-l 
II CP ON A LATTICE 

There are several formulations of the CPN-' models on a 

lattice. However, in order to exhibit the u(l) gauge 

invariance, we will use the direct transcription of the 

continuum model. The action reads 

s2- --p,x [ Z*,(J) q,g z,(e) + c-c]..... (I) Y‘);i,~ 
Here i labels a lattice site,p a unit vector in one of 

the four euclidian directions and&= 1 , . . . . . , N labels the N 

complex scalar fields of CPN-! Z,(i) and U.- 
w 

label the 

complex scalar fields on the lattice sites and the usual 

gauge link variable respectively. The scalar fields on each 

site satisfy the constraint 

Fi Z:(i) Z,(i) =l . . . . . 12) 
oL=i 

In this work N=3 and we have CP2. The scalar fields are 

then parametrized as follows 

z,(i)=P,(i) e 
L 0, (id 

and the constraint of eq.(2) becomes 

y2 (i)+ P: (i)+Pl ( i)=l 



Thus the Pa (i) are the Cartesian coordinates of a sphere of 

unit radius 

If we further define cp (i,$) as the U(1) gauge link angle we 

may write S2 as 

s,= -62 c 2% (3 F& (;+/L -1 cos 0,(L)- e<(LtG)+ #J,ja 4&a [ 1 . . . (3) 

If we further add a kinetic term to the gauge fields in the 

form of a Wilson action we have 

s, z-p, 1 2 cos +p . ...(4) [ 1 
PLAPUETTES 

where t$p is the usual plaquette angle given as the 

appropriate sum over the link anglesc&,$. 

The action S=S,tS2 is now that of a Higgs model on the 

lattice with N complex scalar fields in a narrow deep 

potential enforcing the constraint of eq(2). The pure cpN-' 

is the limit as p,*O of S and the pure U(1) system is the 

limitP2-t0 of S. Thus S interpolates between two systems 

whose properties we are to compare and contrast. 

Furthermore in the limit p,-w the system S reduces to 

the O(2N) sigma model. For in this limit all gauge link 

angles are forced to zero and the action becomes 

Lim s= s: = c -p:[ Z4+(IcI) ZJ,+,-1+c-cl... (5) 

P,-- * 44 
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which with constraint of eq.(2) is a lattice formulation of 

O(2N). This model is known to have a phase transition with 

calculable upper and lower bounds which for O(6) and our 

choice of pi are 

0.465 2 p:,,. 2 0.375 

Thus our system S interpolates to this model as well and 

must reflect its critical structure. 

The first step in our study is to see how, if at all, CPN-' 

simulates u(1) on the lattice; and in particular whether 

their phases interpolate smoothly among each other in the 

P, r P2 plane- Before discussing the Monte Carlo simulations 

let us now briefly discuss what one might expect on general 

grounds. Consider the CPN-'part of the action S . In the 

smallP2 limit (strong coupling) one may expand the Boltzman 

factor es2 and perform the integration over the scalar 

fields Z,(i). The fundamental integral to be used is: 

2 /,,zdz,(z;jl cz,i S($, z: &-I)= 2r;!cs,:“m;y’ (6) &=I 
The leading contribution that has gauge link variables 

present in a non-trivial way comes from the (S2)4 term 

where one obtains the product of four link factors (CZ: (i) 
OL 

+c.c.) around an isolated plaquette. The 

result in terms of the gauge link variables is a Wilson 

a 4 action term with a coefficient-r (6) for CP2 . This term 

may be considered as the leading term in an expansion of a 



Boltzman factor for a Wilson action in terms of these link 

variables. Thus at least for small p, one can generate 

from a CP2 action the leading behavior of a Wilson U(1) 

(IO) 
gauge action. This , on the lattice, is the corresponding 

behavior to the large N limit in two dimensions mentioned 

earlier. Thus two conclusions may be drawn from this 

observation. First, for pure CPN-' , one may expect for 

small P2 a behavior similar to the confining region of 

u (1) - Second for PI # 0 and @,-+O the U(i) action 

acquires an extra term with similar "relevant operators" and 

coefficient O(p27. Thus the behavior of the combined system 

will be the same as a pure U(1) with all values of p, 

shifted downwards. In particular the known phase transition 

at P . 

expeZs,t L'ravYk, Yzi:Ll.at 

a smaller value since one 

The important point here is 

that CP 
N-l 

contributes "relevant operators to the U(1) 

system. therefore we expect in the p, ,p2 plane a phase 

transition line emanating from&' -land curving towards 

smaller PI as 62 is increased above’zero. 

If cpN-' maintains this property for all p2 then we would 

expect a phase transition along the P2 axis and more 

importantly the phase transition line will continue to it 

approaching it from below asP,-+O. This approach indicates 

that the U(1) "relevant operators" are also contributing to 

those of CPN-' even at large values of p2 . We do not have 
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a proof of this but present it as a possible signal to be 

looked for in the Monte Carlo simulation we perform. 

Further since in the P ,--tmlimit one expects the system to 

reduce to O(2N) as explained above, one would expect a phase 

transition line to appear for large PI and within the 

limits known for the critical values of& Of O(2N). If 

this line then terminates at a value of p, Short of the 

line emanating from P,cs -1 then the the Coulomb phase of 

U(1) may be smoothly connected with the small coupling phase 

of CP 
N-l . Monte Carlo results for simple Higgs systems 

('3) suggest otherwise however. Since in the limit/?22mthe 

model is trivial and the Higgs scalars carry unit charge one 

expects these two lines to meet. As we shall see the Monte 

Carlo simulation we perform supports this expectation. 

To study the phase diagram in the p, , p, plane we set up 

the model on a 54 lattice with periodic boundary conditions 

in all four directions. We measure the order parameters 

along thermal cycles and look for hysteresis curves. The 

location of the transition is determined by subtracting the 

heating curve from the cooling curve. Using all points that 

exhibit cooling-heating differences in the order parameter 

that is greater than 0.25 of the maximum such difference, we 

perform a weighted average. Each value of p is given a 

weight proportional to the cooling-heating difference in the 

order parameter. The mean p is then taken to be the phase 
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transition point and the error in the mean is taken to be 

the uncertainty in the position of the transition. 

The two order parameters are, first, the average energy per 

plaquette for gauge variables and, second, the average 

energy per link for scalar and gauge variables. We normally 

fix PI and/or P2 and sweep in the other variable. We 

obtain , using the average energy per link, the results 

shown on Fig.1. A similar result is obtained using the 

plaquette energy but,except for values of pi near one , 

the error in the location of transitions is larger in this 

case. Clearly for p, =0 the only parameter available is the 

plaquette variable and we use it. We show in Fig.5 typical 

hysteresis curves at PI =0.5, and scanning in p2 over the 

range zero to two. The differences used in locating the 

points of maximum separation are shown in Fig 6. Both order 

parameters are used. For U(1) we use the elements of 

Z(512). 

As is clear from Fig.1 we have three distinct regions in the 

p, , 6, plane separated by phase transition lines as 

anticipated above. 

We see that the confining phase of u (1) connects smoothly 

with the strong coupling region of CP2 . The phase 

transition curve joining the phase transition points along 
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each axis has the correct curvature to indicate what we 

showed to be true for small p, ; namely that for all 

I4 s 0.82, cp2 and U(1) share some "relevant operators" 

and hence are expected to have similar behavior in that 

region. 

The Coulomb phase of U(1) is clearly separated from the 

Higgs phase of the system which in turn connects smoothly 

with the region P2 lO.82Of CP2 . Thus CP2 does not seem to 

exhibit any Coulomb phase similar to U(1) but is rather more 

like its confining phase only. 

III Static Potentials 

In order to study further the various phases of the model 

and in particular to compare the U(1) and CP axis we 

measure by Monte Carlo simulation also on an a ~3 lattice 

the potential between static charges in these various 

regions. We follow here the method of De Grand and 

Toussaint (‘51 - We do so by studying Wilson loops W(r,t) 

which should be very long in the t direction and are of 

length r in the spatial direction. For, one then has: 

V(I) = ;zw +Tdw t;‘,t,) (7) 

Where f = Nt X Lattice Spacing 

Because we use periodic boundary conditions we are 

effectively measuring 

w (IT-Tl,t)= cos ( 2 0 (7, ?;) - : 6 cu, ti) ) 
I I > (8) 
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The proper identification of v(r) as in eq. 8 above requires 

the lattice to be at finite real temperature (15). This is 

simulated here by taking fewer lattice points in the time 

direction than in the space direction. Hence the choice of 

a" x3 lattice. 

In order to improve convergence we measure W only at values 

of PI P2 and or very close to the phase transition points 

and average over all lengths Izul ; thus we do not test for 

rotational symmetry of the potential. 

Along the U(1) axis results for V(r) have been obtained 

before (15) for a Villain type action. We repeat here the 

calculation for the Wilson action and get similar results as 

shown in Fig.3. In the Coulomb phase the calculation was 

done using an a3x4 lattice at PI =l.lO. As in reference 

(15) an inverse r dependence is evident. In the confining 

phase an S3x3 lattice was used ,as every where else, and at 

PI = 0.97 this behavior is replaced by a predominantly linear 

behavior again as in Ref(l5). 

On the CP2 axis the results we have are new. These are 

shown in Fig.3. Finally the potential at a point given by 

p, = I $,= 0.6 in the Higgs phase has also been measured 

for the first time and is shown in Fig.4. There is clear 

similarity between the results in Fig.4 and those in Fig.3b 
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and one is lead to confirm the result already evident from 

the phase diagram of Fig.1 namely that the low coupling 

(high p2 ) phase of CP2 is a continuation of the Higgs 

phase. Thus CP2 does not generate here a "Coulomb" type 

potential as u(l) does. The similarity between the results 

of Fig.3a and the confining phase of U(1) in Fig.2a is 

harder to discern, if at all, and in fact, except for the 

scale, the small p, phase of CP2 shows flat behavior with 

distance, similar to its other phase. It does not seem to 

show the linear rise characteristic of the confining U(1) 

phase. Note that all distances are of course in units of 

lattice spacing: further since the lattice is periodic over 

8 units one can use the results only up to around 5 units. 

IV DiSCUSSiOn snd Conclusions 

We have mapped out the phase diagram of a model that 

interpolates between CP2 , U(l) and O(6) models on the 

lattice. We immediately find that the pure CP2 model has a 

phase transition and that its weak coupling (high 6,) phase 

is separated from the corresponding (Coulomb) phase of U(1). 

On the other hand the strong coupling phase (small p2 ) 

appears to be in the same region as the confining phase of 

u (1). The shape of the phase boundaries also confirm simple 
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arguments based on the strong coupling expansion of CP 
N-l 

that CP2 and u(1) are expected to exhibit similar behavior 

in this phase and that they share similar relevant 

operators. HOWeVeK when we measure the static potential 

between external sources in the confining phase of U(1) we 

find a clear signal for linear confining potential ; on the 

contrary CP2 does not generate such a potential in its 

corresponding phase. CP2 with its flat potential in both 

of its phases generates short range forces that are similar 

to those from the Higgs phase potential which we also 

measured. Thus if dynamical generation of a gauge 

interaction is taking place it can only be seen in a Higgs 

phase where all "gauge particles" are massive. 

As discussed in the introduction, hope has been expressed 

(5 ) that CPN-' models may generate massless composite gauge 

particles in the continuum. In the case discussed above 

this would translate ,on the lattice , to the expectation 

that Coulomb or confining gauge potentials similar to those 

of U(L) would be generated by CP2 . Our main result is that 

this hope is not well founded. Possible modification of 

this result could occur if one considers larger values of N 

in CPN-' . However this would take us out of the scope of 

this investigation. 
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Figure Captions. 

Fig.1 CP* -u(l)-o(6) phase diagram. 
The dotted line is drawn to guide the eye. 

Fig.2a Potential vs. distance for the confining phase of U(1) at 
p, = 0.97, p* =o.o 

distance for the Coulomb phase of U(l) at Fig. 2bB;oke:Ffa; $. =. . o 

Fig.3a Potential vs. distance for the CP* 
and PI 

model atB2 = 0.725 
= 0.0; below the phase transition point 

Fig.3b Potential vs. distance for the CP* 
and p, = 0.0 ; 

model at p, = 0.95 
above the phase transition point. 

Fig.4 Potential vs. 
p, =0.6 

length in the abelian Higgs phase ;p, =l.O, 

Fig.5a Hysteresis curve showing phase transition at p, =0.5 and 
4 = =0.66+.03 with the average plaquette energy as the 
order parameter. 

Fig.Sb Hysteresis curve showing phase transition at p, = 0.5 ,and 
P* = 0.62kO.03 with the average energy per link as the 
order parameter. 

Fig.6a Difference of hysteresis curves of Fig 5a. 

Fig.6b Difference of hysteresis curves of Fig 5b. 
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